الفصل الثالث: العوامل المناخية و علاقتها بالكائنات الحية

تعمّد: المناخ هو مجموع الظروف الجوية التي تسود في منطقة جغرافية معينة، خلال مدة زمنية محددة. ومن أهم مكوناته نذكر التساقطات، الحرارة، الرطوبة، الإضاءة، الرياح... و تدعى هذه المكونات عوامل مناخية. فما هو تأثير هذه العوامل على توزيع الكائنات الحية؟

I - قياس و تمثيل العوامل المناخية.

١ - قياس العوامل المناخية. أنظر الوثيقة ١.

الوثيقة ١: وسائط قياس العوامل المناخية.

تستخدم محطات الأرصاد الجوية عدة وسائط وأجهزة لقياس مختلف العوامل المناخية، وتوضع هذه الأجهزة في ظروف خاصة لضمان دقة القياس.

- Thermomètre = محضر
- Thermo-hygromètre = محضر - مرطب
- Héliographe = هيليوغراف
- Pluviomètre = مطر
- Anémomètre = مرياح
- Luxmètre = مضواء

٢ - التساقطات:

يمكن المطر من قياس كمية الأمطار P، المتجمعة كل يوم، ويعبر 1 mm من المطر عن تساقط كمية 1 لتر من الماء على مساحة 1 m² خلال يوم. وهكذا يمكن تحديد كمية التساقطات خلال شهر أو خلال سنة. وهكذا فالمعدل السنوي للتساقطات هو مجموع التساقطات الشهرية للسنة.

٣ - الحرارة:

يمكن المحضر من قياس درجة الحرارة ب °C. إذ نسجل الحرارة الدنيا ونرمز لها ب m، والحرارة القصوى ونرمز لها ب M.

- يمكن حساب معدل الحرارة الشهرية: هو مجموع الحرارة القصوى للأيام مقسم على عدد أيام الشهر. و معدل الحرارة الدنيا، هو مجموع الحرارة الدنيا للأيام مقسم على عدد أيام الشهر.

- يمكن حساب معدل درجات الحرارة السنوية.
بالنسبة لمعدل الحرارة السنوي T فيساوي معدل الحرارة القصوى للشهر الأكثر حرارة، (تمتلك أكبر قيمة لدرجة الحرارة القصوى خلال شهر يوليو) والحارة الدنيا للشهر الأكثر برودة (تحتل أصغر قيمة للحرارة خلال شهر يناير).

$$T = \frac{M + m}{2}$$

$M - m$ والذي يساوي Amplitude thermique يمكن حساب الوسع الحراري

ج - عوامل أخرى:
الرطوبة: يمكن قياس رطوبة الجو النسبية (HR)، أي كثافة الماء في الهواء، بواسطة محرار - مرطاب، وتتناسب بواسطة الصيغة التالية:

$$HR = \frac{H_1}{H_2} \times 100$$

- شدة الإضاءة: تقاس شدة الإضاءة (B) بواسطة ضوء (Lux).
- الريح: تقاس سرعة الرياح بواسطة المريخ (B) (K/h).
- مدة التشمس: تقاس بالليزر (مجر).

تمثيل تغيرات العوامل المناخية.
لفهم كيفية تأثير أهم العوامل المناخية (التساقطات المطرية P، ودرجة الحرارة T)، يتم تمثيل تغيراتها على شكل منحنى وخطوط.

أ - التمثيل البياني لتغيرات التساقطات: P
لانجاز منحنى تغيرات مقاييس الأمطار، نضع على محور الأرنيب معدل التساقطات لكل شهر، وعلى محور الأفاصيل نضع شهر السنة.

ب - التمثيل البياني لتغيرات الحرارة T
لانجاز منحنى تغيرات درجات الحرارة T، نضع على محور الأرنيب معدل درجة الحرارة المحصل عليها لكل شهر، وعلى محور الأفاصيل نضع شهر السنة.

ج - التمثيل البياني لتغيرات كل من T وP = الأخطوطة المطر - حراري:
لانجاز الأخطوطة مطر - حراري (Diagramme ombro-thermique) على أحد محار البرائ في الحرارة الشهري، وعلى المحور الآخر معدل التساقطات الشهري، بحيث أن كل درجة حرارة يقابلها عدد مضاعف من كمية الأمطار. ونضع على محور الأفاصيل شهر السنة.

د - الأخطوطة المناخية:
نضع على محور الأرنيب معدل درجات الحرارة T الشهري، وعلى محور الأفاصيل معدل التساقطات الشهرية P. نصل النقط المحصل عليها والممثلة لكل شهر ببعض، لتشكل على مجال مغلق يدعى الأخطوطة المناخية.
5- دراسة أمثلة: أنظر الوثيقة 2:

الوثيقة 2: المعدلات الشهرية لكل من التساقطات (P) والحرارة (T).

يتوفر المرصد الوطني للأرصاد الجوية معلومات عديدة عن درجات الحرارة والتغريزات لعدة محطات وطنية. يعطي الجدول التالي المعدلات العددية الخاصة ببعض المحطات.

<table>
<thead>
<tr>
<th>الشهر</th>
<th>كمامة (1520m)</th>
<th>طنجة (15m)</th>
<th>أزرو (1250m)</th>
<th>بفرن (1635m)</th>
<th>عين كمالة (2000m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>يناير</td>
<td>9.6</td>
<td>15.4</td>
<td>117.4</td>
<td>75.4</td>
<td>3.2</td>
</tr>
<tr>
<td>فبراير</td>
<td>10.9</td>
<td>15.9</td>
<td>104.6</td>
<td>8.0</td>
<td>4.0</td>
</tr>
<tr>
<td>مارس</td>
<td>12.9</td>
<td>17.4</td>
<td>95.5</td>
<td>7.3</td>
<td>3.7</td>
</tr>
<tr>
<td>أبريل</td>
<td>13.4</td>
<td>19.2</td>
<td>56.7</td>
<td>6.2</td>
<td>2.0</td>
</tr>
<tr>
<td>مايو</td>
<td>14.5</td>
<td>19.2</td>
<td>93.6</td>
<td>7.2</td>
<td>2.2</td>
</tr>
<tr>
<td>يونيو</td>
<td>14.3</td>
<td>21.4</td>
<td>39.2</td>
<td>8.3</td>
<td>2.8</td>
</tr>
<tr>
<td>يوليو</td>
<td>14.0</td>
<td>21.4</td>
<td>24.2</td>
<td>10.2</td>
<td>2.0</td>
</tr>
<tr>
<td>أغسطس</td>
<td>14.1</td>
<td>21.4</td>
<td>24.2</td>
<td>11.2</td>
<td>2.2</td>
</tr>
<tr>
<td>سبتمبر</td>
<td>14.1</td>
<td>21.4</td>
<td>24.2</td>
<td>11.2</td>
<td>2.2</td>
</tr>
<tr>
<td>أكتوبر</td>
<td>14.1</td>
<td>21.4</td>
<td>24.2</td>
<td>11.2</td>
<td>2.2</td>
</tr>
<tr>
<td>نوفمبر</td>
<td>14.1</td>
<td>21.4</td>
<td>24.2</td>
<td>11.2</td>
<td>2.2</td>
</tr>
<tr>
<td>ديسمبر</td>
<td>14.1</td>
<td>21.4</td>
<td>24.2</td>
<td>11.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Pa = 754 mm Pa = 105.2 mm Pa = 829.8 mm Pa = 754 mm Pa = 1648.3 mm

= P المعدلات الشهرية للتساقطات، = Pa المعدل السنوي للتساقطات، = m المعدل الشهري للحرارة، = P المعدلات الشهرية القصوى للحرارة.

باعتماد على هذه المعدلات العددية، أنتجت بالنسبة لمحط معينة:

1) التمثل البياني للتغييرات التساقطات.
2) التمثل البياني للتغييرات الحرارة.
3) الأخطوط مطر = حراري، حلل هذا الأخطوط.
4) الأخطوط المناخية.

www.mowahadi.com
نلاحظ على الأخطوط مطر - حراري تقليل المنحنين، وخصوصا عندما ينزل منحنى التساقطات P أسفل منحنى الحرارة T، فتتكون مساحة تحقيق حدثة تتميز بتساقطات ضعيفة وحرارة مرتفعة تسمى فترة الجفاف. إن النسبة P/T تمثل عامل الجفاف، إذ كلما كانت P/T ≤ 2 فإن الشهر يعتبر جافا.

II – دور العوامل المناخية في توزيع الكائنات الحية.

أ – تأثير العوامل المناخية على توزيع النباتات.

ب – دراسة مثال: توزيع شجر الأرز

الوثيقة 3: مناطق توزيع غابات الأرز بالمغرب

تتميز شجرة الأرز بطول قد يصل إلى 40 متراً، جذوعها غليظ بلغة بشرة حرشفية سميكة تميل إلى السواد، أوراقها تكون على شكل أب ومركبة في حزم، وثمارها مخروطية الشكل. كما أن شجر الأرز يستلزم بجهزات جذر يسفي سطحي لا يتغول في الأعماق ولذلك فهو لا يستفيد من الماء الجوفية. بتنتر الأرز في جبال المريف، الأطلس المتوسط والمناطق الأعلى تمور من الموارد المتنوعة في توزيع شجر الأرز، نقترح:

- المعطى الأول: يوضح الشكل A من الوثيقة مساحة توزيع الأرز بالمغرب.

- المعطى الثاني: يمثل جدول الشكل B جدول التوزيع النباتي الذي ينمو عليه شجر الأرز.

- المعطى الثالث: يعطى جدول الوثيقة 2 معدل التساقطات السنوية، والارتفاع لمجموعة من المحطات.
1 (اً) انطلاقاً من تحليل المعطى الأول والثاني، استنتج العامل أو العوامل المسؤولة عن توزيع غابات الأرز بالمغرب؟

2 (ب) إذا لم تنتج من المعطى الثالث إذا علمت أن الأرز يوجد بمحطة كتابة، يفرن، وعين كحالة، ولا يوجد بمحطة طنجة وأزرو.

3 (ج) أنجز على ورق ميليمترى الأخطوط المطر - حراري لكل من كتابة، طنجة، بفرن، وعين كحالة، مع تحديد مدة فترة الحولة لكل محطة. ثم استخلص الظروف المناخية الضرورية لنمو شجر الأرز.

خلاصة:

1 (اً) انطلاقاً من:
- المعطى الأول: يتبنى من هذا المعطى أن شجر الأرز ينمو في المرتفعات (جبال الأطلس المتوسط الكبير والريف) حيث تنخفض درجة الحرارة ويزيده تفاصل الأمطار.
- المعطى الثاني: يتبنى من هذا المعطى أن شجر الأرز ينمو على جميع أنواع التربة، إذن يمكن اعتبار هذا النوع من النباتات لا مبالاً بعامل التربة وبالتالي فللعامل التربوي لا يتحكم في توزيع شجر الأرز.

2 (ب) يتبنى من جدول الوثيقة 2 أن غابة الأرز تتواجد بالمحطات التي غالبًا ما تتعدي فيها تفاصل الأمطار السنوية 751.6 mm ومحطة أزرو يوجي بوجود شجر الأرز، إلا أنها في الواقع لا تتوفر عليه. يمكن القول إذن إن كمية الأمطار وحدها لا تتدخل في توزيع الأرز، إذا يجب الأخذ بعين الاعتبار كل من التفاصلات والحرارة.

يتبني من المعطيات السابقة أن عامل التربة ليس مسؤولاً على توزيع شجر الأرز، بل إن هذا التوزيع يرتبط أساساً بعوامل مناخية.

3 (ج) الأخطوات المطر - حراري لمحطات تواجد وعمد تواجد شجر الأرز. (انظر الورق الميليمترى).
نحدد مدة فترة الجفاف لكل محطة انطلاقاً من الأخطوطة المطر حراري:
- محطة كنامة: 3 أشهر (من بداية يونيو إلى بداية شتنبر).
- محطة يفرين: 3 أشهر (من بداية يونيو إلى بداية شتنبر).
- محطة عين كحلة: شهرين ونصف (من بداية يونيو إلى منتصف غشت).
- محطة طنجة: 4 أشهر (من منتصف ماي إلى منتصف شتنبر).
- محطة أزرو: 3 أشهر ونصف (من أواخر شهر ماي إلى الأيام الأولى من شهر شتنبر).

يتبين من مقارنة الأخطوطة المطر حراري لمختلف المحطات السابقة أن الأرز يتواجد بالمناطق التي تتميز بفترة جفاف قصيرة، لا تتجاوز ثلاثة أشهر، تنحصر بين شهر يونيو وشتنبر. إذن مناطق ذات تساقطات مرتفعة ودرجات حرارة منخفضة، الشيء الذي يفسر تواجد هذه الشجرة بالمرتفعات.

ب - العوامل التي تساهم في تغيير التساقطات والحرارة على الصعيد الوطني:
- ملاحظات: أنظر الوثيقة 4 - a

الوثيقة 4: العوامل التي تساهم في تغيير التساقطات والحرارة على الصعيد الوطني.

يعطى جدول الشكل A معلومات عن الظروف الجوية في محطات الأخطوطة السنوية.

1) حقل هذه المعطيات وأعط تفسيراً للتغيرات الملاحظة في قيمة
2) إذا تناولت هذه الوثيقة؟
3) إذا تناولت هذه الوثيقة؟

الشكل B:

<table>
<thead>
<tr>
<th>المحطات</th>
<th>ارتفاع عن البحر</th>
<th>البعيد عن البحر</th>
<th>النقاط</th>
<th>الوانج بين العيون</th>
</tr>
</thead>
</table>
| سيدني | 475 m | 320 m | 170 | 15 | 1
| ميامي | 113 m | 73 m | 31 | 1 |
| باريس | 233 m | 254 m | 305 | 337 |

الشكل A:

<table>
<thead>
<tr>
<th>المحطات</th>
<th>الارتفاع</th>
<th>الرطوبة</th>
<th>نقطة طنجة</th>
<th>النقاط</th>
<th>الوانج بين العيون</th>
</tr>
</thead>
<tbody>
<tr>
<td>سيدني</td>
<td>75 m</td>
<td>587.5 m</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ميامي</td>
<td>69 m</td>
<td>248 m</td>
<td>337</td>
<td>337</td>
<td>15</td>
</tr>
</tbody>
</table>

www.mowahadi.com
1) نلاحظ أن كمية الأمطار تتناقص تدريجياً من طنجة إلى العيون. يفسر هذا بكوننا ننتقل من الشمال إلى الجنوب. إذن نسبة التساقطات تتغير حسب خطوط العرض.

2) نلاحظ أن كمية الأمطار تتناقص كلما اتجهنا من الغرب نحو الشرق. يعني أن كمية الأمطار تنخفض كلما ابتعدنا عن البحر في اتجاه القارة.

3) نلاحظ أن كمية الأمطار تتغير حسب التضاريس، أي حسب الارتفاع.

- استنتاجات:

١. إن العوامل المناخية تغير حسب جهات المملكة، فالتساقطات تنخفض من الشمال إلى الجنوب، ومن الغرب إلى الشرق. كما أن الحرارة تغير كذلك حسب الموقع والارتفاع. وهكذا يمكن تحديد عدة مجالات مناخية بالمغرب، فحسب قيمة معدل التساقطات السنوية والحرارة نجد:

- مجال رطب: 700 mm ≤ Pa < 2000 mm
- مجال جاف: 100 mm ≤ Pa ≤ 700 mm
- مجال صحراوي: Pa < 100 mm

- مجال ذو شتاء جد بارد: m < 0 °C
- مجال ذو شتاء بارد: 0 °C ≤ m ≤ 3 °C
- مجال ذو شتاء معتدل: 3 °C < m ≤ 7 °C
- مجال ذو شتاء حار: m > 7 °C

L.Emberger لكي تؤخذ بعين الاعتبار مختلف العوامل (Pa, T, m, M) في أين واحد، اقترح صيغة مناسبة، استعملت بصفة أساسية في المغرب، وفي حوض البحر الأبيض المتوسط. ويعبر عنها كما يلي:

\[
Q = \frac{1000 \times Pa}{(M + m) \times (M - m)}
\]

(الحاصل المطري لمنطقة معينة.

المعدل السنوي للأمطار (ب) = Pa
ولتجنب الأعداد العشريّة تقريب في 1000. معدل درجات الحرارة القصوى خلال الشهر = M
الأكثر حرارة (درجة مطلقة 273 + °C).
معدل درجات الحرارة الدنيا خلال الشهر = m
الأكثر برودة (درجة مطلقة 273 + °C).
المعدل الحراري السنوي. = (M+m)/2
الوسيع الحراري. = (M-m)
تمكّن هذه الصيغة من إنجاز الأخطوط الحيمناخي ل Emberger: أنظر الوثيقة 5.

توضع على محور الأفاصيل قيم m، وتقشف هذه القيم بخطين موازيين لمحور الأراتيب، الأول يمر من النقطة m+3°C والثاني من m+7°C. يعبر محور الأراتيب عن مختلف قيم Q الممكنة.

لكي تؤخذ بين الاعتبار مختلف العوامل (Pa, T, m, M) في Emberger. أن واحد اقترح صيغة مناسبة، استعملت بصفة أساسية في المغرب، وفي حوض البحر الأبيض المتوسط. وي عبر عنها كما يلي:

\[Q = \frac{1000 \times Pa}{(M+m) \times (M-m)} \]

الحاصل المطري لمنطقة معينة.

لون الوثيقة: الأخطوط حيمناخي ل Emberger.

كل طبقة مناخية تتواجد بها وتطابق معها مجموعة من النباتات لها نفس المتطلبات البيئية العامة، وتخلص نقص التأثيرات المناخية، وتشكل طبقة نباتية. وهكذا فالطبقة النباتية والطبقة المناخية المقابلة لها تشكل طبقة حي مناخية ähnlich. Zone bioclimatique .

أركان، العنب (Arganier)، الطرقات (Tamarix)، الصويرة (Jujubier)، المراكش، باب بويدر، وطنجة.
veyor 6: تمرین. تعتبر شجرة أركان (Argana spinosa) من الأشجار المميزة للغابة المغربية، وتحصر حالياً بحلفة سوس.

1) ما الفرضيات التي يمكن صياغتها لتفسير أسباب التحديد الجغرافي لشجرة أركان?

تبيان المعلومات المحقق عليها من الملاحظات الميدانية أن شجرة أركان تنمو في أماكن ذات تربة مختلفة الأصل: مروست، شيعيت، كلس، رمل، دولوميت، طين ...

2) ماذا يمكن استنتاجه من هذه المعلومات لتفسير التوزيع الجغرافي لشجرة أركان؟

لتحديد بعض المتطلبات المناخية لشجرة أركان، أنجزت قياسات بمحطات مختلفة، ويوضح الجدول أسفل النتائج المحصل عليها:

<table>
<thead>
<tr>
<th>المحطات</th>
<th>الطنجة</th>
<th>ميدلت</th>
<th>أكادير</th>
</tr>
</thead>
<tbody>
<tr>
<td>m (°C)</td>
<td>9.6</td>
<td>7.2</td>
<td>4.8</td>
</tr>
<tr>
<td>M (°C)</td>
<td>26.4</td>
<td>33.3</td>
<td>22.2</td>
</tr>
</tbody>
</table>

3) حسب الوسيع الحراري و قيمة الحاصل المطرى لمحطات أكادير، وطنجة، وميدلت.

4) باستعمال الأخطوط المطر - حراري ل Emberger استنتج المجال الحياني لكل من المحطات الثلاث، ثم فسر وجد أركان بأكادير وغيابه بكل من طنجة وميدلت.

1) يمكن تفسير التحديد الجغرافي لشجرة أركان بفترتئاد تدخل عوامل تربوية أو مناخية أو هما معا.

2) نستنتج من هذه الملاحظة أن التحديد الجغرافي لغابة أركان غير مرتبط بعوامل تربوية. نحتفظ إذن بالعوامل المناخية.

$$ Q = \frac{1000 \times Pa}{(M + m) \times (M - m)} $$

أكادير:

$$ Q = \frac{1000 \times 248}{((27.1 + 273) + (7.2 + 273)) \times ((27.1 + 273) - (7.2 + 273))} = 42.95 $$

ميدلت:

$$ Q = \frac{1000 \times 232}{((33.3 + 273) + (0.3 + 273)) \times ((33.3 + 273) - (0.3 + 273))} = 24.26 $$

طنجة:

$$ Q = \frac{1000 \times 780}{((26.4 + 273) + (9.6 + 273)) \times ((26.4 + 273) - (9.6 + 273))} = 159.5 $$

www.mowahadi.com
(الثيقة 5)، يتبين أن أكادير ينتمي إلى المجال الحيمناخي نصف قاحل ذو شتاء حار، ومحطة ميدلت تنتمي للمجال الحيمناخي القاحل ذو شتاء بارد، ومحطة طنجة تنتمي للمجال الحيمناخي شبه الرطب ذو شتاء حار. تتواجد شجرة أركان بأكادير لتتوفر الظروف الملائمة لنمو هذه الشجرة، وهو المجال نصف القاحل ذو شتاء حار. بينما تتعدد هذه الشجرة بطنية بسبب الرطوبة، وبمبدلات بسبب البرودة.

تأثر العوامل المناخية على توزيع الحيوانات.

- مثال 1: أنظر الوثيقة 7.

<table>
<thead>
<tr>
<th>T °C</th>
<th>عدد الأفراد</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 45</td>
<td>0</td>
</tr>
<tr>
<td>44 - 40</td>
<td>4</td>
</tr>
<tr>
<td>39 - 35</td>
<td>18</td>
</tr>
<tr>
<td>34 - 30</td>
<td>77</td>
</tr>
<tr>
<td>29 - 25</td>
<td>159</td>
</tr>
<tr>
<td>24 - 20</td>
<td>45</td>
</tr>
<tr>
<td>19 - 15</td>
<td>11</td>
</tr>
<tr>
<td>14 - 10</td>
<td>1</td>
</tr>
<tr>
<td>< 10</td>
<td>0</td>
</tr>
</tbody>
</table>

1) أنجز منحنى التفضيلات الحرارية للنمل الأشقر.
2) استنتج من هذا المنحنى، درجة الحرارة الفضلى وحدود التحمل لدى هذا الحيوان.
3) فسر كيف يتكيف الفأر الفنغر مع ظروف عيشه.
4) ماذآ تستنتج؟
4) تتوزع الحيوانات حسب حاجاتها إلى الماء والرطوبة، وبذلك تحتل هذه الحيوانات أوساطا توفر الظروف الملائمة لعيشها.

ب - مثال 2: أنظر الوثيقة 8.

الوثيقة 8: توزيع حشرة السوسة La bruche التي تتبك بدور اللوبيا بفرنسا

1) أ - قارن مساحة توزيع هذه الحشرة خلال صيف 1950 وصيف 1951.

2) كيف تفسر الاختلاف في مساحة توزيع الحشرة؟

3) استنتج العامل المحدد لانتشار هذه الحشرة.

4) ما هي تفضيلات الحشرة إذن اتجاه درجة الحرارة؟

![الشكل A: توزيع الحشرة في فرنسا خلال صيف 1950](www.mowahadi.com)

![الشكل B: توزيع الحشرة في فرنسا خلال صيف 1951](www.mowahadi.com)

![الشكل C: توزيع الحشرة في فرنسا خلال شهور يوليوز](www.mowahadi.com)

1) أ - نلاحظ أن مساحة توزيع الحشرة يكون أكبر خلال صيف 1950، من توزيعها خلال صيف 1951.

ب - يرجع الاختلاف في توزيع الحشرة لاختلاف تموزيع ثابتة درجة الحرارة 19°C لشهر يوليوز.

ج - العامل المحدد لانتشار هذه الحشرة هو درجة الحرارة.

2) درجة الحرارة الفضلى لهذه الحشرة هي: 22°C

\[m = 6°C \]

\[M = 42°C \]

حدود التحمل الدنيا (m) وحدود التحمل القصوى (M).

3) نلاحظ بخصوص توزيع عدد أفراد الحشرة من جهتي المحور المار بدرجة الحرارة الفضلى، أنه يكون أكثر امتدادا من جهة درجة الحرارة المرتفعة.

4) إذن الحشرة تفضل درجات الحرارة المرتفعة.
الثيقة 9: تأثير عامل الحرارة والرطوبة.

لدراسة تأثير كل من درجة الحرارة والرطوبة على توزيع حيوان ما في منطقة معينة تقوم بانجاز الأخطوط المناخي. بعد ذلك نحدد مجالات عيش الحيوان حسب ظروف كل من الرطوبة والحرارة وبذلك ننجز الأخطوط البيئي – المناخي لهذا الحيوان.

١

<table>
<thead>
<tr>
<th>الشهر</th>
<th>رطوبة</th>
<th>درجة الحرارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>يناير</td>
<td>70</td>
<td>12</td>
</tr>
<tr>
<td>فبراير</td>
<td>72</td>
<td>15.5</td>
</tr>
<tr>
<td>مارس</td>
<td>70</td>
<td>14</td>
</tr>
<tr>
<td>أبريل</td>
<td>71.5</td>
<td>12.5</td>
</tr>
<tr>
<td>مايو</td>
<td>68</td>
<td>10</td>
</tr>
<tr>
<td>يونيو</td>
<td>67</td>
<td>16.5</td>
</tr>
<tr>
<td>يوليو</td>
<td>61</td>
<td>15</td>
</tr>
<tr>
<td>أغسطس</td>
<td>67</td>
<td>13</td>
</tr>
<tr>
<td>سبتمبر</td>
<td>73</td>
<td>10.5</td>
</tr>
<tr>
<td>أكتوبر</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td>نوفمبر</td>
<td>73</td>
<td>24</td>
</tr>
</tbody>
</table>

لا يمكننا قراءة المحتوى بشكل طبيعي.

٢

<table>
<thead>
<tr>
<th>مجال العيش الأفضل</th>
<th>الحد الأدنى</th>
<th>الحد الأقصى</th>
<th>الرطوبة %</th>
<th>درجة الحرارة °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>مجال الحمل</td>
<td>60</td>
<td>85</td>
<td>40</td>
<td>13.5</td>
</tr>
<tr>
<td>مجال العيش الفضلي</td>
<td>20</td>
<td>16</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>

٣

(1) أنجز الأخطوط المناخي لمحطة طنجة وميدلت، وأنظر المبيان أسفله.

(2) يرجع الاختلاف الملاحظ في نسبة الرطوبة بين المباني إلى كون طنجة تعتبر منطقة ساحلية تتأثر برطوبة البحر، تختلف من حيث الارتفاع (طنة 15، ميدلت km 1508).

(3) منطقة العيش الفضلي ومنطقة التحمل، أنظر الأخطوط المناخي:
4) نلاحظ أن منطقة عيش الدعوسة الأفضل ومجال تحمله، يوجد بمنطقة طنجة، بينما منطقة ميدلت لا
تعتبر منطقة ملائمة لعيش هذا الحيوان، لوجود شهر ذات حرارة منخفضة (D, N, M, F, J).
وعند شهر حارة (S, O, J, J).
إن معرفة الأخطوات البيئية المناخية تساعد على معرفة هل يمكن إدخال كائنات حية جديدة في حمالة
بيئية.
د - خلاصة:
تحدّد العوامل المناخية توزيع الأنواع الحيوانية. وقد يكون أحد هذه العوامل محدداً لنوع حيواني معين (يحد
من تواجده) كما توجد أنواع حيوانية أخرى تتمنع بقابلية واسعة لتحمل العوامل المناخية ويفتردتها على
التكيف.

- تأثير العوامل المناخية على أنشطة الكائنات الحية.

- تأثير العوامل المناخية على أنشطة النباتات. أنظر الوثيقة 10.

| الوثيقة 10: الأشكال البيولوجية للنباتات. |

<table>
<thead>
<tr>
<th>خلال فصل الشتاء</th>
<th>يتموضع البرعم النهائي</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) نتعرّض بعض الأشجار والشجيرات وورقة، ولا تحتفظ إلا بالبرعم</td>
<td>2) تحتفظ النباتات الوزارية، الورقة، النباتات بورعها، النباتات بالأوراق، البراعم في النهاية جدموه، وتهبط في انتظار الأماكن، التي ستعود في الساق.</td>
</tr>
<tr>
<td>3) لا يبقى من النباتات الحيوانية إلا النور يتم داخل البرعم</td>
<td></td>
</tr>
</tbody>
</table>

- تأثير العوامل المناخية على أنشطة الحيوانات.

- مثال 1: السنجاب الهووق. أنظر الوثيقة 11.

| الوثيقة 11: تأثير بعض العوامل المناخية على سلوك السنجاب الهووق. |

- السنجاب الهووق حيوان ثديي يتميز بشئون كثيف خلال فصل الشتاء حيث يحفر جحراً في البرعم، حيث يبحث الجحور في النورשיבה بعدة فصول الشتاء في مأوى من مفرط، حيث يستغرق هذا البرعم ويتمبر، ومن النباتات، مثل السنجاب الهووق جحوره، ويبحث شئون كثيف حيث يدخّل في نوم عميق ولا ينام، إذا أنsequences البكتيريا الشتوية، ورغبة في أن يستغرق لبضع ساعات كل 15 يوماً، فانه لا يسترجع نشاطه

- يعني الجدول التالي بعض الخصائص الفيزيولوجية للسنجاب الهووق.

<table>
<thead>
<tr>
<th>بعض الخصائص الفيزيولوجية</th>
<th>قبل فصل الشتاء</th>
<th>بعد فصل الشتاء</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجة حرارة الجسم ب درجة مئوية</td>
<td>37</td>
<td>150</td>
</tr>
<tr>
<td>إيقاع القلب ب Batt/min</td>
<td>350</td>
<td>300</td>
</tr>
</tbody>
</table>
خلال فصل الشتاء تتغير الخصائص الفيزيولوجية للسنجاب الهووقل، حيث تنخفض درجة حرارة جسمه، وينخفض إيقاع القلب، كما تنخفض كثفته. يتبين إذن أن نشاط السنجاب يرتبط بفصول السنة. هذا يدل على أن المناخ يؤثر على نشاط السنجاب الهووقل.

ب - مثال 2: اللقلق البيضاء أنظر الوثيقة 12.

<table>
<thead>
<tr>
<th>الوثيقة 12: هجرة اللقلق البيضاء</th>
</tr>
</thead>
<tbody>
<tr>
<td>الطائر مهاجر يعيش في المناطق ذات الحرارة المعتدلة. فهو يهاجر إلى أوروبا خلال فصل الصيف، بينما يقضي فصل الشتاء بإفريقيا.</td>
</tr>
</tbody>
</table>

1. حدد لون أحمر على الخريطة مسار هجرة اللقلق البيضاء.
2. حدد سلم الخريطة المسافة التي يقطعها لقلق أبيض بين المغرب وتنزانيا. ماذا تستنتج؟
3. حدد العوامل المثيرة على هجرة اللقلق البيضاء.

اللقلق البيضاء: la cigogne

اللقلق البيضاء طائر مهاجر يعيش في المناطق ذات الحرارة المعتدلة. فهو يهاجر إلى أوروبا خلال فصل الصيف، بينما يقضي فصل الشتاء بإفريقيا.

مكتبت عمليات تختيم كتاكتية اللقلق البيضاء بالمغرب من معرفة منطقة تشتتتها، حيث قيض على عدد كبير منها بلدان إفريقيا الآتية: السنغال 2، مالي 3، غينيا 4، كونديفوار 5، النيجير 6، النيفاد 7، إفريقيا الوسطى 8، وتانزانيا 9.

1. حدد السلم: 000 000 150000000
2. حدد المسافة التي يقطعها لقلق أبيض من المغرب إلى تانزانيا هي:

\[d = 8.5 \text{ cm} \times 150000000 = 1275000000 \text{ cm} = 12750 \text{ Km} \]

يتتبين من هذه المعطيات أن اللقلق يقطع مسافة طويلة خلال ظاهرة الهجرة، بحثا عن ظروف مناخية ملائمة. إذن العوامل المناخية تغير من نشاط اللقلق البيضاء.

3. تتكسر الهجرة لدى هذه الطيور خلال نفس الفترة من السنة، إلى أماكن ذات حرارة معتدلة، مما يبين أن العامل المؤثر على هجرة اللقلق البيضاء هو عامل الحرارة.

ج - خلاصة:

تعرف الحيوانات خلال مراحل نموها وعيسها، فترات من الحياة البطيئة كظاهرة النيفاد الشتوي، وتغيرات في نشاطها وسلوكها كظاهرة الهجرة، وذلك تحت تأثير عوامل داخلية هرمونية، وعوامل خارجية خاصة العوامل المناخية.

14

www.mowahadi.com
التحكم في العوامل المناخية كوسيلة لتطوير الإنتاج الفلاحي. أنظر الوثيقة 13.

الوثيقة 13: أهمية البيوت المغطاة في الزراعة

<table>
<thead>
<tr>
<th>الأنواع المزروعة</th>
<th>في الحقل في بيوت بلاستيكية مكيفة</th>
<th>في بيوت بلاستيكية عادية</th>
<th>المردودية بالطن في الهكتار</th>
</tr>
</thead>
<tbody>
<tr>
<td>خيار</td>
<td>204.8</td>
<td>99.5</td>
<td>30.6</td>
</tr>
<tr>
<td>طماطم</td>
<td>117.7</td>
<td>92.6</td>
<td>35.5</td>
</tr>
<tr>
<td>بانان</td>
<td>106.4</td>
<td>37.9</td>
<td>20.2</td>
</tr>
<tr>
<td>فليفة</td>
<td>55.6</td>
<td>40.2</td>
<td>19.7</td>
</tr>
<tr>
<td>كوس</td>
<td>46.9</td>
<td>54</td>
<td>19.8</td>
</tr>
<tr>
<td>خس</td>
<td>36.4</td>
<td>33.2</td>
<td>22.7</td>
</tr>
<tr>
<td>بطيخ</td>
<td>34.2</td>
<td>26.2</td>
<td>12.8</td>
</tr>
<tr>
<td>توت الأرض</td>
<td>24.8</td>
<td>17.5</td>
<td>12.5</td>
</tr>
<tr>
<td>فجل</td>
<td>17.4</td>
<td>18.6</td>
<td>13.5</td>
</tr>
</tbody>
</table>

يمكن تحسين مردودية الإنتاج الفلاحي بتغيير المحيط المناخي للزراعات، وذلك بعدة تقنيات أهمها البيوت البلاستيكية أو الزجاجية أو الزراعة المغطاة التي تسمح ب:

- التحكم في درجة الحرارة.
- الحد من تأثير الرياح.
- التحكم في نسبة الإضاءة.

بفضل هذه البيوت البلاستيكية أصبح من الممكن زراعة نباتات ما في مناطق يشتد فيها ذلك طبيعياً. مثلاً زراعة البذور على طول السنة بغض النظر عن الفصول الملائمة.